Classification and Mapping of Plant Communities Using Multi-Temporal and Multi-Spectral Satellite Images

نویسندگان

چکیده

Classification and mapping of plant communities is an essential step for conservation management ecosystems biodiversity. We adopt the Genus-Physiognomy-Ecosystem (GPE) system developed in previous study satellite-based classification at a broad scale. This paper assesses potential multi-spectral multi-temporal images collected by Sentinel-2 satellites GPE types. research was conducted seven representative sites different climatic regions ranging from one warm-temperate site Aya to six cool-temperate Hakkoda, Zao, Oze, Shirakami, Kitakami Shiranuka. The types were enumerated all ground truth data with reference extant vegetation surveys, visual interpretation high-resolution images, onsite field observations. acquired Level-1C product available between 2017-2019 generated monthly median composite consisting ten spectral twelve spectral-indices. Gradient Boosting Decision Trees (GBDT) classifier employed supervised satellite support data. cross-validation accuracy terms kappa coefficient varied 87% Oze 41 95% Hakkoda 19 types; average performance 91% across sites. maps produced this demonstrated clear distribution sites, highlighting operational broad-scale communities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Multi-spectral, Multi-temporal and Multi-sensor Images Using Principal Components Analysis and Artificial Neural Networks: Beykoz Case

The thematic maps derived from remotely-sensed images are invaluable sources of information for various investigations since they provide spatial and temporal information about the nature of Earth surface materials and objects. The robustness of classification techniques used to produce these thematic maps can be crucial especially for complex classification problems. This study aims to determi...

متن کامل

Classification of multi-spectral satellite image data

This paper describes a novel classification technique—NRBF (Normalized Radial Basis Function) neural network classifier based on spectral clustering methods. The spectral method is used in the unsupervised learning part of the NRBF neural networks. Compared with other general clustering methods used in NRBF neural networks, such as KMeans, the spectral method can avoid the local minima problem ...

متن کامل

Analyzing Urban Sprawl Spatial Fragmentation Using Multi-temporal Satellite Images

The landscape pattern of Daqing City, China has undergone a significant change during the last two decades as a result of rapid urbanization. A quantitative analysis describing the spatial fragmentation caused by urban sprawl from satellite images was presented on three dates: 1979, 1990, and 2000. Five landscape indices with supplementary ecological meanings were chosen to facilitate our exami...

متن کامل

investigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances

در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geography and Geology

سال: 2022

ISSN: ['1916-9779', '1916-9787']

DOI: https://doi.org/10.5539/jgg.v14n1p43